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Abstract. We present a comprehensive study ofthe effects of inhomogeneities on nonlinear 
excitation dynamics in different one-dimensional soliton-bearing systems. We theoretically 
analyse soliton scattering by one and two point-like impurities in the framework of the 

predict that interference effects arise in the form of an oscillatory dependence ofthe soliton 
reflection coefficient on the distance between impurities. The main fanor responsible for 
this behaviour is the spectral density of the soliton radiation: the values of that distance 
which are integer multiples of the main wavelength radiated by the soliton upon collision 
with the inhomogeneities give rise to  resonant scattering, with very link reflection. Our 
approximate analytical predictions explain previous numerical results concerning nonlinear 
lattices, and are further supported by new simulations that we have performed on.thc 
sine-Gordon system. 
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1. Introduction 

The comprehension of the interplay between disorder and nonlinearity is of funda- 
meniai importance in many physicai contexts. Tneir combination gives rise to a number 
of unsolved mathematical and physical problems, which are currently receiving much 
attention [l]. Most of these problems belong to condensed matter physics, where 
nonlinear, soliton-bearing models are often used to approximately describe actual 
systems, and disorder is later taken into account to make models more realistic (see, 
for instance, [2] and [3] for reviews). One of the most interesting and natural questions 

localization and the possibility of soliton propagation. As a first step to understand 
this relationship, it is very important to have a well-established picture of soliton 
scattering in systems with few impurities, because localization generally originates 
from multiple interference between backscattered waves. 

Solitons, the well known self-localized waves which describe elementary nonlinear 

purposes [4]. This is so because the evolution equations, derived through some analyti- 
cal approach, that govern their dynamics under the influence of perturbations, are 
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commonly quite similar to those of particles under external forces. However, as solitons 
are solutions of nonlinear wave equations, they possess also wave properties: for 
instance, solitons emit small amplitude (quasi-linear) radiation upon collision with a 
single inhomogeneity [2,31. This radiation could then originate interference phenomena 
when several scatterers are present in the system, which would constitute the most 
remarkable manifestation of the corpuscular-wave character of solitons. 

On the other hand, aside from the fact that they all share a few, very general 
features, solitons can be classified in three different types [5]: dynamical solitons, 
which are sustained by means of dynamical conservation laws, like Korteweg-de Vries 
(Kdv) ones; topological solitons, which connect parts of the systems in different states 
that have the same energy, as in the nonlinear Klein-Gordon models, and envelope 
solitons, which consist of a carrier wave with a localized envelope, as in the nonlinear 
Schrodinger (NLS) equation. The distinction between solitons belonging to one kind 
or another arises from many factors, and it is quite iikeiy that their scaiiering properties 
will also not be the same. This is the reason why each one of these classes deserves a 
separate study on its own, as addressed in this paper. As our main aim is related to 
interference effects, we will deal with the problem of soliton scattering by two point-like 
impurities, the simplest model capable of giving rise to these effects. 

The paper is organized as follows. In section 2 we review, for completeness, the 

radiation induced effects in inhomogeneous systems. Section 3 is devoted to the study 
of nonlinear chains, in which both dynamical solitons and envelope solitons are allowed 
to propagate, being described by effective Kdv and NLS equations, respectively. We 
will show that the former does not show resonant scattering for any distance between 
impurities, while the latter does have an oscillatory dependence of the soliton reflection 
coefficient on the distance between impurities. By means of these results, we will be 
able to explain the outcome of previous numerical work on nonlinear lattices [6]. In 
section 4 we prove a similar behaviour for the remaining kind of solitons, topological 
ones, taking the sineGordon system as an example. We make a detailed comparison 
of our predictions with numerical simulations specifically designed and performed for 
this purpose on the sine-Gordon and cp4 models, and finish with some comments on 
the physical relevance of these calculations. Section 5 concludes the paper. 
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2. Perturbation induced dynamics of solitons 

2 1 .  Adiabatic dynamics of solitons 

Soliton dynamics under the action of external inhomogeneous perturbations has been 
studied in a number of papers (e.g. see [Z, 31 and references therein). In particular, 
starting from the famous paper by Fogel et al[4], static inhomogeneities which describe 
several local defects have been considered as perturbations in all nonlinear models. 
If these inhomogeneities are not too strong, or do not vary too fast, their effect on 
soliton dynamics can be estimated by means of perturbative procedures. More 
specifically, these procedures apply in two cases, namely, if the characteristic size of 
the impurities is either much larger or much smaller than the soliton size; then, the 
ratio of both lengths can be used as a small parameter to develop the corresponding 
approximate description of soliton dynamics through perturbation theory. In this 
framework, the crudest approach is the zeroth order one: to suppose that the influence 
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of the inhomogeneities on the soliton gives rise only to change in their parameters, 
like centre position, velocity, etc. This amounts to considering them as particle-like 
objects as we stated above, and it is usually named the adiabatic approach. 

As an illustration, let us briefly consider the motion of a sine-Gordon (SG)  soliton, 
also referred to as a kink, in an external field, described by the equation 

(2.1) 

where the subscripts t and x stand for partial derivatives with respect to the correspond- 
ing variables. When E = 0, the kink solution of the s~ equation is given by 

U,, - U,, + sin U = E ~ ( x )  sin U 

uk(x,t)-4tan-'exp u- [ SI 
where c=  Vt+ lo  is the kink centre coordinate, V is its velocity and U =  *1 
(u=+I corresponds to a kink, U =  -1 to an antikink). Besides, the unperturbed SG 

system has an infinite number of quantities that are conserved in the evolution, among 
which there is the momentum, 

m 

P s  - dxu,~, .  (2.3) 

Forthe kink, equation (2.2), equation (2.3) takes the form of the well known relativistic 
expression P = 8 VI-. In the presence of perturbations, the momentum is no 
longer conserved; using (2.1) it is possible to show that it varies according to 

I, 
d P  
-= E \-- dxf(x)(cos U), 
d t  

which is valid provided the boundary condition U +O (mod 2 ~ )  at x +  *CC holds. The 
adiabatic approach is now defined by the assumption that, for E small enough, the 
kink shape will not be affected and its coordinate 5 and its velocity V will become 
slowly changing functions of time. Within this hypothesis it can be then shown that, 
in the non-relativistic limit Vzc< 1, the kink centre obeys the following evolution law: 

where 

and we have used the approximate expression P - 8  db/dt, valid for small velocities. 
Thus, in the framework of the adiabatic approach, the motion of the SG kink can be 
thought of as that of a particle with mass 8 in the external potential U([) defined by 
(2.6). Tie same can be shown for reiativistic kinks [ i j .  

The two aforementioned cases arise naturally from equations (2.5) and (2.6). If 
f ( x )  changes rapidly over distances of the order of the kink length, then E has to he 
small for our approximation to hold. For example, in the case f ( x )  = S(x), we 
have [8] 

U([) = - 2 ~  sech2(l). (2.7) 
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On the other hand, iff(x) changes slowly, i.e. its characteristic length (say L) is much 
larger than the kink length, it is not necessary that E is small, because all the parameters 
of the perturbation theory are of the order of L-’, and we are left with 
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Up to now, we have seen that soliton dynamics in the presence of inhomogeneities 
is similar to that of particles in external fields. However, solitons are solutions of 
nonlinear evolution equations, which describe systems with an infinite number of 
degrees of freedom. Hence, the reduction of such a complicated problem to one with 
one or two degrees of freedom is an approximate, oversimplified procedure. The actual 
soliton dynamics is accompanied by emission of linear waves both forwards and 
backwards, and this emission cannot be accounted for in the adiabatic approach. This 
is the topic we deal with in the next subsection. 

2.2. Perturbation-induced soliton emission 

The most powerful method to analyse wave properties of solitons, i.e. those related to 
their emission induced by any kind of perturbation, is the one based in the inverse 
scattering transform (1s.r) [9J, which, in tum, can be only used for systems close to 
completely integrable ones. In recent years, perturbative techniques of this type have 
been developed for almost all of the quasi-integrable systems (see [2] for a detailed 
account of these techniques). The general idea of the procedure is the following. For 
the unperturbed system, the is~provides a transformation from the nonlinear evolution 
equation to a linear integral problem. This transformation is in some sense similar to 
an action-angie change of variabies: the evoiution of the wavefieid can be written in 
terms of the eigenvalues of a spectral problem, which remain constant while the field 
evolves in time, and of the corresponding eigenfunctions, which have a trivial evolution. 
For instance, the eigenfunctions associated with the radiation, usually represented by 
b(A, t )  (the so-called Jost coefficients, see, e.g. [9] ) ,  A being the eigenvalue, follow the 
equation 

where O(A) is the radiation frequency. Its precise relationship to A depends on the 
specific equation we are considering. 

If we now add to the unperturbed equation a new term, say E R ( u ) ,  the time 
evolution of these Jost coefficients change, and it can be shown to be given, up to 
first-order terms, by 

-- ab(A’ ‘)-ifi(h)b(A, t ) + e F ( A ,  t )  
d t  

where 

(2.10) 

(2.11) 

Assuming that at t - t  -a, the wavefield U had the shape of an exact solution of the 
unperturbed problem, which amounts to saying that there was no radiation at all, we 
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can put b(A, -00) =O. Subsequently, the solution of (2.10) at +a, can be obtained as 
m t-m dt' F(A,  t ' )  e-'*(*,')'= eincr.t)'B(A). (2.12) I, b(A, t)  - E ein(*J)' 

Finally, the suitable physical quantity to describe the radiation emission, the emitted 
spectral energy density % ( A ) ,  can be estimated when the radiated amplitude is not too 
large [Ib(A, t)12<< 11 through 

1 
z ( A ) - - g ( A ) l b ( A ,  t)I2 (2.13) 

where g(A) again depends on the precise equation we are studying, and can be computed 
by means of IST. Thus, in this approximation the total energy emitted by a soliton 
during its interaction with the perturbation is 

?r 

1 
% ( A ,  t=+m)=-g (A) lB(A , r ) l '  (2.14) 

7r 

and 

(2.15) 

this last one being the fundamental expression that we will need in what follows. 

3. Soliton-impurity interaction in nonlinear chains 

Now, let us apply the formalism that we have briefly reviewed to specific problems. 
We will begin studying a nonlinear monoatomic chain, with nearest-neighbour interac- 
tions, whose Hamiltonian is 

Here, y.(f) stands for the longitudinal displacement of the nth atom from its equilibrium 
position, and m. = ym, with y # 1 only for certain sites, which represent the impurities. 
With respect to the interaction potential, we can choose it in a rather general form, 
with terms up to fourth order, as 

Gr2 Ar' Br4 
U ( r ) = - + - + - - .  

2 3 4  

This will be a good approximation to any potential for not too large displacements, 
From the Hamiltonian (3.11, the equations of motion can be written in the form 

d2y. 
dt2 - %--- G(y.+,  - 2 ~ .  + Y , - , ) + A ( Y , + ~  - Y , ) ~ - A ( Y ,  - Y ~ - , ) '  

+ B ( Y ~ + ,  - Y ~ ) ' - B ( Y ~  - Y ~ - , Y .  (3.3) 
It is possible to obtain approximate solutions for the set of equations (3.3) in the 

well known continuum limit [ 101. In such a limit, one can derive either the Boussinesq 
( ~ q )  equation or the NLS equation, depending on the type of excitations considered, 
as we will show in the next two subsections. 
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3.1. Dynamical kinks 

3.1.1. Equation of morion and kink solution. Looking for kink-like solutions and using 
an improved quasi-continuum approximation [ I l l ,  equation (3.3) can be cast in the 
form of a generalized Boussinesq equation (CBq) (for the corresponding derivation in 
the perfectly homogeneous case, see [6, lo]), given by 

Yu S Kivshar et a1 

u . - ~ ’ u ~ ~ - p ( u Z ) , - q ( u i ) , - h u , , = a ( l - y ) f ( x ) u , ,  (3.4) 
where a is the lattice spacing, U = y ,  and 

Ga4 
m m m 12m 

h I -  Ba4 q-- Aa’ p - -  Go ’ 
c 2 = -  (3.5) 

are constants. On the other hand, the function f ( x )  may describe several 
izhomgc!lcitie.; for exa=?p!e, we wi!! he co!lside:ixg be!ow :‘.e t-o-i-p-rity p:&!cm, 
f (x)’ E [ S ( X ) + S ( X - D ) ] .  

In the absence of any perturbation and when q = 0 (the standard Bq equation), 
equation (3.4) has a kink-like solution of the form 

u(x ,  1 )  =A,,, tanh (3.6) 

where 

V being the kink velocity; on the other hand, the kink energy is given by 

4 mA’, 
15 aL E (4 v2+ c’). k -  

(3.7) 

This is the solution whose scattering properties we want to study. However, as it 
stands, the problem is still not suitable for our perturbative approach, because the 
unperturbed G B ~  equation (3.4) with f (x) = 0 is not integrable. To be able to obtain 
the analytical results we are interested in, it has to  be transformed once more. Let us 
introduce the new variables 

(3.9) c - E ( X - C ! )  7 = E  ! 

~ ~ ~ , ! ) ~ ~ ~ ~ ~ ~ , : ) ~ ~ 3 ~ 3 ~ ~ ,  !)+ . . . .  (3.10) 

3 

and look for solutions of the form 

Substitution of (3.9) and (3.10) into (3.4) with q = O  yields a perturbed Kdv equation 
for the function w -  (U,)(: 

with f = a ( l - y ) .  
If we finally introduce the variables 

(3.11) 

(3.12) 
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we obtain the usual Kdv equation when i = 0. Thus, we can now profit from the 
perturbation theory for the Kdv soliton to study the effects of the additional term 

on the Kdv soliton 

(3.13) 

(3.14) 

A direct to the expansion of (3.6) and (3.7) for small values of 
to the relation 

& ~ = m = f A  (3.15) 

and in the same approximation the kink energy takes the form 

(3.16) 

3.1.2. Kink radiative effects. We can now compute the reflection coefficient for the 
dynamical kink. To this end, we will rewrite the energy ( 3 . 1 )  as an integral of the Kdv 
equation by means of the new variables given in (3.9) and (3.12) and of the continuum 
approximation, obtaining 

(3.17) 

n.e spectr..! density %(*) nf the cncrgy rzdi2ted by the kink Cl!! be ce?!c..!zted W i t h  
the help of the formalism of section 2 and using the formulae from the review paper 
[Z]. For a single impurity, i.e. f ( x )  = S(x), we arrive at 

(3.18) 

(3.19) 

The total energy reflected by the impurity (recall that Kdv solitons can emit linear 
waves only backwards, i.e. in the direction opposite to its own propagation) has the form 

b4( 1 + b2)’ 
9P a 

which leads to the following reflection coefficient: 

(3.20) 

(3.21) 

Thus, our procedure yields an R - E?’’ as  can be seen from (3.21), in good agreement 
with previous results of Yoshida and Sakuma [12] .  Furthermore, this prediction also 
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agrees very well with the numerical simulations of Qiming er a/ [6]. In that work a 
nonlinear chain was studied, but with an interparticle potential of the form V(r) = 
P(exp(-pr)- l)’, i.e. the Morse potential, which can be approximated for small r by 
a cubic potential like the one we have considered. They numerically obtained the 
quantity S T-’ - 1; when R >> 1 the value S coincides very accurately with R So, 
their results can be compared directly with ours, and it can be seen [6] that the 
numerical dependences are again R - E:/’ and R - ( y - l)’, qualitatively the same as 
the ones we have computed. 

The spectral density of the emitted energy, given by (3.19), E,,(b) - %(A), increases 
with b for small b, but if b >> 1 it becomes exponentially small, E.,(b) - b8 exp(-2ab) 
(see figure 1). Hence, it has a maximum, which is of the order of unity, at b - 1 (i.e. 
A - K ) ,  with a rather large width. Thus, such a wide spectral density should not give 
rise to any particular length scale producing interference effects during Kdv-soliton 
scattering by two impurities, which is our main interest. To prove this, let us calculate 
the corresponding reflection coefficient: substituting now f ( x )  = S(x)+ S(x - D) ,  it is 
aossible to arrive at 

Yu S Kivshar et a/ 

b4(1i b2)2 cos2[2Ab( I +  b’)] 
2 a  7 R = -  - A 2  
3 ( hc’ ) lomdb sinh’(ab) 

where 

(3.22) 

(3.23) 

For A >> 1 (large distance between impurities, or large V) the asymptotic dependence 
turns out to be 

(3.24) 

with R ,  being defined by (3.21); as should happen, this expression implies that for 
separated impurities, the total reflection coefficient is simply the sum of the individual 
ones. At the other limit, A<< 1 (nearby impurities or low velocities), we have 

R=4R,  -(3.25) 

which is again reasonable, because if D + 0 the intensity of the composite impurity 
becomes 27  instead of +. 

b 

Figure 1. Spectral density emitted by a dynamical 
kink (a KdV soliton) in a monoatomic chain with 
a single inhomogeneity. The plotted curve is 
Eem( b ) /  Eo, with Eo = 2mne’fi A5?/9a(phc’)’, 
and b=A/z  (see equations (3.19) and (3.20)). 
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The whole dependence of the ratio R / 2 R ,  is depicted in figure 2. It is clearly 
appreciated from that plot the absence of any oscillation, which would indicate the 
existence of interference effects. These effects are inhibited due to the fact that there 
is no predominant wavenumber in the radiation emitted by the kink; instead, a wide 
spectrum arises. It is important to note that in the paper by Qiming e t  a1 [6], the 
problem for two impurities was also addressed. Those authors found a decreasing of 
the transmission coefficient, equivalently, an increasing of the reflection coefficient, as 
appears from figure 7 in [a]. This behaviour is once more qualitatively the same as 
that we have obtained, except for the fact that the numerical curve does not exhibit 
the first part of our curve, only the part after the maximum (in the transmission 
coefficient). The reason for this discrepancy is that the position of the minimum we 
are predicting is of the order of the lattice spacing used in [6] and, as a consequence, 
it was not possible to see numerically the rapid change of the reflection coefficient for 
small distances. 

3.2. Enuelope solitons 

3.2.1. Equation of motion a n d  soliton solution. Let us now move to a different type of 
excitation, namely, envelope solitons. To this end, we look for oscillating, localized 
solutions of (3.3) in the form 

(3.26) 

(cc stands for complex conjugate) with 0. = knn - o and E a small scaling parameter. 
By means of this ansatz, we can treat the phases O, ( t )  exactly and use the continuum 
approximation only for the envelope functions F,,(n, 1) .  For the quartic potential 
( p  = 0 in (3.4)) it can be seen [ 101 that only the term with j = m = 1 contributes in the 
leading order, and then (3.26) reduces to 

y.( 1 )  = eF,,( n, I )  ei8* + cc. (3.27) 

The amplitude F,,(n,  t )  becomes F ( x =  an, t)  in the continuum limit and verifies the 
following perturbed NLS equation, accurate up to order e 3 :  

Flgure 2. Ratio of soliton reflection coefficients RIZR, 
against the parameter A defined in equation (3.23). 

0 1 2 3 4 5 6 which is proportional to the distance between 
A impurities. 
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where f (x) is once more related to possible inhomogeneities, i is the same as in the 
preceding section, and 
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7 

F+F (3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

and the variables in (3.28) are 

r-pt t = x - V& (3.34) 

A similar approach applies also for the case of cubic and cubic plus quartic potentials, 
except for the fact that it is necessary to keep consistently the zero- and second-order 
terms in E and some higher harmonics, even though few of them contribute (e.g. see 

When i = O  and ko>O, equation (3.28) admits the well known envelope soliton 
[lo]). 

solution, whose expression is 

where 29 is the soliton amplitude, -45 its velocity, and 

Z E 29(  X + 45l- (0) 8 = 4(9'+ f 2 ) +  8, 

(3.35) 

(3.36) 

As in the previous section, we will concern ourselves with the problem of this soliton 
(3.35) scattering by one or two impurities. 

3.2.2. Soliton radiative eflects. Let us begin with the single impurity problem, corres- 
ponding to the choicef(x) = S(x). It can be verified that only the last term from (3.28) 

calculations for the perturbation (for more details, see [2,13]) 
COfitfik~tej to the fiiiic~on ,rj<A) in :E,; case, 2nd +hot 4 t - r  Airp,-+ hlx+ namhmrmme 

LULL,, L L L L I L  ".."_. "". ~"..."".""...I 

one arrives at 

4j'$ ( A  -5)'+T2 I S ( A ) ~ '  =- Tr2  
Vi cosh2(s(A - 5)/29)' 

(3.37) 

(3.38) 

To recast this expression into a physical meaningful one, let us transform the chain 
energy using the same approximations described above: substitution of (3.26) and 
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(3.34) into the chain Hamiltonian (3.1) leads, in the lowest order, to the following 
expression for the energy: 

(3.39) 

In the theory of the NLS equation, the quantity N is usually termed 'number of 
quasi-particles'. Now we can compute the spectral energy density, which turns out to 
be 

( A -  5)'+T2 g ( h )  = E ,  
Cosh2(?r(A -f) /2q)  

where 

(3.40) 

(3.41) 

The function %(A) /E ,  is depicted in figure 3 for two different values of (I = q/xi. It 
shows a maximum at 1 = h / C  = 1, with width AX- (I, which implies that, if (I >> 1, the 
peak is very narrow (see figure 3 ( a ) ) ,  making possible the appearance of interference 

soliton energy is 4q) 
eEeas. The reflection cnefficien! Fer a sing!. impl?rity is new (reca!! !hi%! the !e!*! 

(3.42) 

We will now move to the case when two impurities are present in the system, 
r f . , - s i - \ L s f - -  n\ nn --am+-o~ A---:+.. :- t... 

J ,*,- ",*, I ",* U,. 111s JYCC'LL. Uu.'"LGy .a 6 L " b "  Yy 

[(I- 1)2+(12]2 
$(A)  = E ,  COS'(A[(I - 1)'+n2]) 

cosh2[?r(k- 1) /2a ]  

where A=2DpC2/ V,, and the reflection coefficient turns out to he 

(3.43) 

(3.44) 

As in the dynamical kink case, when A+O, equation (3.44) goes to the value of a 
single point impurity of intensity 2 j  and, in the opposite limit, the reflection coefficient 
goes to the value 2 R l ,  which corresponds to non-resonant, independent scattering. 

Figure 3. Spectral energy density emitted by an NLS envelope soliton in a monoatomic 
chain: ( a ) e = O . I ; ( b )  n = l .  
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However, a new feature appears for envelope solitons, coming from the narrow emission 
peak taking place when n << 1: in that limit, the reflection coefficient is very accurately 
given by 

E,n 
2 w 

R = 2 R ,  +- cos(2A). (3.45) 

It is clear from this expression that in this case resonant scattering takes place, showing 
itself through the oscillatory dependence of the reflection coefficient that appears in 
figure 4. Again, the agreement between our predictions and the numerical simulations 
on the same problem by Qiming et al [6]  is rather good, as can be inferred from 
comparison of their figure 8 with our predictions. 

2'06 1.5 

I bl 

I I 
0 5 10 15 20 0 100 200 300 4M) 5M) 

A A 

Figure 4. Ratio R / 2 R ,  for the envelope soliton against the parameter A defined in equation 
(3.43): ( a )  a=0.1; ( b )  a = l .  

4. Kink-impurity interactions 

In the previous section, we have shown that envelope solitons exhibit resonance 
scattering phenomena upon collision with two point-like impurities, while dynamical 
kinks do not show such a behaviour. To complete the picture of soliton interaction 
with impurities, we have to deal with topological solitons. The standard examples of 
topological solitons are the kink solutions of the completely integrable sine-Gordon 
(JG) equation and the ones of the non-integrable +4 system. In these equations, the 
kink energy has a non-zero minimum which corresponds to the static solution, so it 
is to be expected that the most natural effect of impurities on the kink soliton will be 
its pinning [14]. This pinning may be easily explained in the simple framework of the 
adiabatic approach, which we described in section 2.1, considering the kink as an 
effective particle [14] (see also [2]). It is by no means a trivial question to ask whether 
topological solitons will also show the signature of their wave nature through interfer- 
ence effects; note that topological kinks have more particle-like characieristics than 
dynamical solitons or envelope solitons (these even have an internal frequency due to 
the carrier wave that can be expected to give rise to interference). Our main aim in 
this section is to answer this question. 

The model we deal with is that of an  inhomogeneous VS system which, in dimension- 
less units, is described by the equations 

U,, - uxx + E ( X )  sin U = 0 

E ~ ( x )  I ~ + E [ S ( X ) + ~ ( X - D ) ] .  
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From the physical point of view, the model (4.1), (4.2) corresponds to a long Josephson 
junction (UI) with point-like inhomogeneities, U being the normalized magnetic flux 
[151. Recently, junctions with such inhomogeneities, having E > 0 (so-called micro- 
shorts) have been constructed and studied experimentally [ 16-18]. The parameter E 

is related to the barrier thickness modulation that leads to a spatial dependence of the 
junction critical current. This dependence may be modelled by a delta function if the 
inhomogeneity length is less than the Josephson penetration length [ 161. The parameter 
D in equation (4.2) is the distance between impurities. A related problem, for finite-size 
inhomogeneities, has been already considered in [19]. At E = 0, the homogeneous SO 

model supports uniform motion of kinks, the expression being 

(4.3) 

where ( = u t + &  is the kink's coordinate, U is its velocity, and u=+l  is its polarity; 
in the following we will assume U = +1  without loss of generality. In UJ theory, the 
kink solution (4.3) describes a magnetic flux quantum, hence termed fluxon, propagat- 
ing along the junction [15]. 

Once more, we will apply the technique described in section 2. Simple calculations 
allow us to obtain the spectral density of the kink emission upon collision with one 
or two impurities in the form (see details of the calculations in [2]) 

D 
8(k)  = 4 ~ , ( k )  cosz( 2~ [ku - o ( k ) ] ]  (4.4) 

where o( k) f Jl+k2, and k is the wavenumber. The function (4.5) is the energy density 
corresponding to a kink scattered by a single (isolated) impurity. Thus, the results 
(4.4), (4.5) allow us to compute directly the soliton reflection coefficients 

J o  

where n = 1,2 stands for the case with one or two impurities, respectively. 
Let us analyse the structure of the kink radiation for small and large velocities. For 

small U (U'<< l) ,  the spectral density 8,(k)  has a single maximum at k = 0 that is quite 
narrow, its width being of order 2u/ TI - U. As a consequence, the maximum will provide 
the main contribution to the emitted energy and give rise to a resonant dependence. 
It is possible to obtain the value Rz/2R,  from equations (4.4)-(4.6) as an approximation 
when U'<< 1 as 

- = 1 +  2R, Rz ( l + D 2 / p )  1 , / ~  cos[:-:tan-l(;)]. (4.7) 

Notice that if D +  0, we find once more the value corresponding to a single impurity 
with double intensity; the opposite limit yields of course R2 = 2 R l .  On the other hand, 
ifthespeedislarge,therearetwomaximaat k , , , = + k , ,  k,,, = 2 ~ / r r ~ = ( l - u * ) - " ~ .  
However, the function q ( k )  is not exponentially small in the region Ikl< k,,,, and 
hence, after averaging over all wavenumbers the oscillatory dependence disappears. 
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Indeed, the asymptotics far large velocities is 

_- d 2coshd 26 cosh'd 
2Ri R2 (smh d sinh d s i n d d  

-1 i -3  -+.j- 

where d 2Dl- ( O m  must hold also in this situation). The limits D+O or 
D-+m lead to the same good results again. 

Thus, we have proved that our perturbative procedure predicts resonant scattering 
of slow kinks. Nevertheless, another question immediately arises: recall that kinks are 

their velocity is under a certain threshold. "his threshold can be estimated very easily 
through the adiabatic approach. Substitution of f ( x )  = S(x) in (2.6) yields [2] 

pjnn& by nt?Taaiyp ( E  € 0) imp&?ie: c p  &e&& by .pp??!..:ye {s > 0) i-pu&& if 

U,,&) = 26 sech? (4.9) 

where 5' is the kink's coordinate defined in (4.3). which in this approach is treated as 
a collective variable. It is clear that for & > 0 the potential is repulsive, and the threshold 
velocity below which the kink is repelled by the impurity can be defined by a simple 
relationship such as 

i m v i , =  U,,*, (4.10) 

where U,,, =2e. For instance, substitution of G = 0.1 and m = 8 into (4.10) yields 
utn ,=m=.0 .224 ,  which is not at all a small value. So, it might be possible that our 
perturbative theory does not have any applicability range. "he only way to check if 
this i s  so or not is to perform numerical simulations OF the model (4.1), and that is 
what we report in the remainder of this section. 

The numerical procedure we use to simulate the kink scattering is the finitedifference 
scheme of Strauss and Wzquez for the nonlinear Klein-Gordon equation 1201. This 
procedure has been successfully employed to study a number of different perturbed 
nonlinear Klein-Gordon problems and it exhibits many good properties (see [21] and 
references therein). Moreover, the most important property of the discrete scheme is 
that it exactly conserves the energy of the system in the unperturbed evolution, and it 
reproduces the variation of energy when the system is under the influence of time- 
dependent perturbations, even if they are strong 1211. This is relevant to the computation 
we intend to do, because ir essentially involves precise energy calculations. Details on 
the scheme can be found in the literature ([20,21] and references therein), and hence 
we will not go into further detail here. 

To discuss the relationship between analytical and numerical results, let us first 
specify the way we compute the reflection coefficient. We start the simulation with a 
kink with a certain initial velocity, its centre sufficiently far away from the first delta 
function, at x = 0, typically 5 units (= the kink width in dimensionless units). We let 
it collide with the two impurities and monitor the amount of energy that is contained 

at the right of the second one, x <  D. When the kink has passed through the second 
impurity, and the amount of energy in the middle is negligible (less than an order 
magnitude smaller than the one in the left, usually two or three orders of magnitude 
except for the largest Ds) we stop the simulation, because then the correction due to 
the energy that has not still travelled backwards to cross x = 0 is very small. The 
reflection coefficient is finally computed straightforwardly as the ratio between the 
energy in the left and the initial energy of the kink, the latter being conserved as the 
total energy of the system. 

irr rh*nn _I--nn. ,,I +Lo 1.x. - C + L  e-, ri ; ,,& -,n. L... ...""- h - 1 ~  sr n, -.. n ,...A 
LB. I h I I C L  L"IIYZ%. L L  lllr lrll U,  lllr U , > L  U. I.C. a, *.U, " F l w r r l l  U V I L l  U*, ".A .U, L L l U  
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The numerical results for two values of the initial kink velocity are shown in figures 
5 and 6, where both theoretical and numerical results are plotted; in both figures, the 
full lines correspond to the analytically computed dependence given by equations 
(4.4)-(4.6). In addition, for U = 0.4 we performed some simulations for attractive delta 
functions, E = -0.1, shown in full circles, about which we will comment later. As can 
he seen, the agreement between analytical and numerical curves is good. The main 
differences arise at U = 0.4 (figure 5); in particular, the asymptotic behaviours of the 
analytical and numerical curves are not the same. This disagreement, that in principle 
should not be expected, can be explained in a natural way. Indeed, the analytical 
results for two impurities were obtained under the assumption that the kink does nor 
change its velocity during the scattering (Born approximation). However, as a matter 
of fact, after the first scattering the kink loses some part of its kinetic energy, so that 
it interacts with the second impurity at a smaller velocity, say U -Ao. Hence, the ratio 
R2/2R,  does not tend to 1 when the distance between deltas, tend to infinity; rather 

0 1 1 3 4 5 6 
0 

Figure 5. Dependence of the reflection coefficient on the distance between impurities for 
a kink with U =0.4 when the impurity is repulsive ( e  =0.1. empty circles) or attractive 
( e  = -0.1, full circles). The ratio of the coefficient to twice the reflection wefficient for one 
impurity is plotted. Full line: analytical calculation taken from equations (4.4)-(4.6). 
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Figure 6. As in figure 5 but with v =0.9. Only reflection coefficients for attractive impurity 
are shown. 
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well, it verifies 

Yu S Kiushar et al 

(4.11) 

EL;) being the energy reflected by a single impurity. To understand the difference 
between EL;)(u) and E:i)-,'(u - A u ) ,  we have analysed the emitted energy for a single 
impurity versus the kink velocity. Figure 7 presents both numerical and analytical 
dependences. From these plots, it turns out that when the initial velocity is u=O.4, 
&,)(U)> Ei;)(u-Au), so that the asymptotics of Rz/ZR,  computed numerically is 
always smaller than the analytical predictions. This ceases to be true when U becomes 
larger than U,,-0.6 because in that range ELi)(u) decreases and hence El;)(u -Au) > 
&)(U), Thus, in figure 6, the numerical asymptotics is slightly above the line R2/2R,  = 
1, the difference being small due to the short time that this kink takes to cross the 
distance D between. much shorter than in the other case. 

306 

" 
Figure 7. Energy €iz emitted during the kink scattering by or 
a function of the kink velocity. Full line: analytical calculation. 

impurity with E =0.1, i 

d e s :  values as abtaine 
from numerical simulations; the dashed line is a cubic spline fitting to the numerical paints. 

Let us briefly discuss the kink scattering by attractive inhomogeneities, E < 0 in 
(4.2). It is easy to see from equations (4.4j44.6) that the analytical approach based 
on the Born approximation give the same results, because all formulae of the perturba- 
tion theory are proportional to E'.  Numerical simulations show some difference (see 
figure 5); for instance, the emitted energy calculated in the way discussed above is 

kink with velocity u=O.4 for a single impurity is El;b)=2.377x lo-' for ~ = 0 . 1 ,  hut 
EL;)= 3.427 x for E = -0.1. This can be understood if we take into account the 
fact that, in the case of an attractive impurity, the linearized SG model supports the 
so-called impurity mode [22], whose expression is 

(4.12) 

Thus, due to the scattering process, the s~ kink excite the impurity mode [23], which 
as it appears from (4.12) is localized in space, being important in the large region 
Ax - I E ~ - ' =  10 (= kink length). This impurity mode does give an additional (but small!) 
contribution to the radiated energy as computed in the region x < 0. Detailed analysis 
of the impurity mode excitation during kink scattering and also a resonant behaviour 

more than that of the repn!sive si!.i?!ian. Fer exmp!e, !he tnta! CEi!!Pd cncrgy nf I 

ui,(x, t )  = a exp(-+lElxj cos ot 0 2 = 1 - '  4E 2 . 
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originated from an energy-exchange mechanism between the kink and this impurity 
mode may be found in the recent papers [24]. 

To conclude this section, we would like to point out that resonant scattering 
phenomena are not a property arising from the integrability of the unperturbed models, 
i.e. from the fact that the inhomogeneous models we are considering here are quasi- 
integrable (which is a necessary condition to apply our perturbative formalism). We 
can show this through some simulations on the 44 model, described by the equations 

U,, - U,+ &(X)(-u+ U ' )  = 0 (4.13) 

EI(X)' 1 +E[S(X)+B(X-D) ]  (4.14) 

and which, in the unperturbed case, is non-integrable. The results of our simulations, 
which will be reported in full detail elsewhere [25], are shown in figure 8. The similarity 
of the behaviour of q54 kinks to those of the SO system is completely evident from this 
plot. So, it is very likely that the main reason for the appearance of resonance scattering 
is the interference experienced by a dominant wavenumber present in the radiation 
emitted by kinks, this being the only common factor between the q54 and JG models. 
Our perturbative technique, based on the IST method, is not valid for the 4' model; 
however, a different approach can explain this behaviour [25], being of the same 
physical origin as for the SG system. 
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Flgnre 8. Dependence of the reflection coefficient on the distance between impuhties for 
a 4' kink with v = 0.4 (empty circles) or v = 0.9 (full circles) for a repulsive impurity 
( E  =0.1). The full line is a cubic spline fitting in both cases. 

5. Conclusions 

We have studied the wave properties of the three main types of solitons, which play 
a crucial role in the scattering processes in inhomogeneous systems through interference 
effects. We have shown that interference is important when there is a characteristic 
wavelength in the spectrum of the radiation emitted by solitons upon collision with 
impurities. Thus, in nonlinear chains, dynamical kinks do not exhibit the peculiar 
oscillatory behaviour of the reflection coefficient proper to the resonance phenomena, 
because they emit a wide linear wave spectrum, while envelope solitons do show 
resonances and oscillatory reflection coefficients for small velocities, when there is a 
well defined peak in their emission spectrum. Our predictions are in good agreement 
with previous numerical simulations. The third type of solitons, topological solitons, 
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present the same properties, even above the reflection-pinning threshold velocity, as 
we have proven numerically. We have also explained the reasons for the small dis- 
crepancies that exist between our theory and numerics. We have discarded the quasi- 
integrability of the models as a possible reason for this behaviour by means of 
simulations of the non-integrable model, having also resonant scattering processes. 
So, we must conclude that the factor responsible for resonances and different behaviours 
of different types of solitons is the linear wave spectrum emitted by them. 

Yu S Kiushnr et nl 
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